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Shiffman’s Conjecture

Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

[unintegrated form] (q − 2n)Af (r) ≤
q∑

j=1

d−1j nQj◦f (r) + o(Af (r))

[integrated form] (q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

where both inequalities hold as r →∞ outside exceptional sets of finite logarithmic
measure.
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Remark

The authors also prove the integrated inequality in the case of slowly moving
hypersurfaces.
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Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

Compare with Ru’s version using the method of Evertse and Ferretti:

(q − n − 1− ε)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r).

under the additonal assumption that f is algebraically non-degenerate.



Result Proof Potential

Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

To date, there is no proof for a number-theoretic analog of Eremenko & Sodin’s
inequality.
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Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

Although not stated in their paper, for reasons explained yesterday, the method works
just as well for f : C→ M ⊂ PN , where M is a closed subset and the hypersurfaces Qj

are n-general with respect to M.
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Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

Their method does not easily generalize if the domain C is replaced by a more general
manifold. They make heavy use of planar geometry in their proofs, also beyond the
Rickman covering lemma.
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Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

Note that there is no “ramification” or “trunctation” in their inequality. This method
cannot prove something like

(q − 2n)Tf (r) ≤
q∑

j=1

N
(1)
Qj◦f (r) + o(Tf (r)).
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Theorem (Eremenko & Sodin)

Let Q1, . . . ,Qq be q homogeneous forms of degree dj whose corresponding
hypersurfaces are in general position in Pn, and let f : C→ Pn be a holomorphic curve
such that none of the Qj ◦ f are identically zero. Then,

(q − 2n)Tf (r) ≤
q∑

j=1

d−1j NQj◦f (r) + o(Tf (r)),

as r →∞ outside an exceptional set of finite logarithmic measure.

Remark

Their method should be effective, in principle. For those interested in the precise
structure of error terms, it could be interesting to work out the precise error term given
by their method, even in the case n = 1 and compare with the error terms given by
logarithmic derivatives and negative curvature.
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Some remarks about the proof

As yesterday, one sets
u = log

(
|f0|2 + · · ·+ |fn|2

)
,

which is subharmonic and non-harmonic if f is non-constant.

Also, as yesterday, one sets uj = log |Qj ◦ f |2, but now uj is only harmonic away
from z such that Qj ◦ f (z) = 0. If we define uj at such z to be −∞, we may
consider uj to be sub-harmonic. This is where the main additional difficulty comes
from.

Like yesterday,
max
j∈I

uj = u + O(1)

for any index set I of cardinality n + 1.

For the moving targets case, one gets

max
j∈I

uj = u + o(Tf (r)).
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The potential theoretic result

As yesterday, one applies the Rickman covering lemma and rescales to get functions v
and vj on D2), the disc of radius 2. As before v is sub-harmonic and non-harmonic.
However, this time the vj are NOT harmonic. They are what is known as
δ-subharmonic, meaning they can be written as the difference of two sub-harmonic
functions.
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Theorem (Eremenko & Sodin)

Let L,M > 0 and q, n ∈ N with q > 2n. For all δ > 0, there exists α > 0 with the following
property: If v is subharmonic and v1, . . . , vq are δ-subharmonic in D(2) with Riesz measures
(charges) ν, and ν1, . . . , νq satisfying:ν +

q∑
j=1

νj

 (D(1)) ≤ M

∣∣∣∣max
j∈I

vj − v

∣∣∣∣ ≤ α for all I s.t. |I | = n + 1,

and

q∑
j=1

ν−j (D(1)) ≤ α, where here νj = ν+j − ν
−
j ,

then the signed measure κ =

q∑
j=1

νj − (q − 2n)ν satisfies

∫
ψ dκ ≥ −δ for all continuous

functions ψ such that 0 ≤ ψ ≤ 1 with support in D(1) and gradient bounded by L.
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