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1. Picard Theorems

I would like to begin by recalling the Fundamental Theorem of Algebra.

Theorem 1.1. (Fundamental Theorem of Algebra) A non-constant polyno-
mial of one complex variable takes on every complex value. Moreover, if the poly-
nomial is of degree d, then every complex value is taken on d times, counting
multiplicity.

Because entire functions have power series expansions, they are sort of like poly-
nomials of infinite degree. Picard’s well-known theorem is a complex analytic analog
of the Fundamental Theorem of Algebra.

Theorem 1.2. (Picard’s (Little) Theorem) A non-constant entire function
takes on all but at most one complex value. Moreover, a transcendental entire
function must take on all but at most one complex value infinitely often.

The function ez shows that a complex entire function can indeed omit one value.
Lately, it has become fashionable to prove p -adic versions of value distribution

theorems, of which Picard’s Theorem is an example, though not a recent one. More
recent examples can be found in the works listed in the references section. Recall
that the p -adic absolute value | |p on the rational number field Q is defined as
follows. If x ∈ Q is written pka/b, where p is a prime, k is an integer, and a and
b are integers relatively prime to p, then |x|p = p−k. Completing Q with respect
to this absolute value results in the field of p-adic numbers, denoted Qp. Taking
the algebraic closure of Qp, extending | |p to it, and then completing once more
results in a complete algebraically closed field, denoted Cp, and often referred to
as the p -adic complex numbers.

Recall that the absolute value | |p satisfies a very strong form of the trian-
gle inequality, namely |x + y|p ≤ max{|x|p, |y|p}. This is referred to as a non-
Archimedean triangle inequality, and this non-Archimedean triangle inequality is
what accounts for most of the differences between function theory on Cp and on
C.

Recall that an infinite series
∑

an converges under a non-Archimedean norm
if and only if lim

n→∞
an = 0. By an entire function on Cp, one means a formal

power series
∞
∑

n=0
anzn, where an are elements of Cp, and lim

n→∞
|an|prn = 0, for

every r > 0, so that plugging in any element of Cp for z results in an absolutely
convergent series.

Most of what I will discuss here is true over an arbitrary algebraically closed field
complete with respect to a non-Archimedean absolute value, but for simplicity’s
sake, I will stick with the concrete case Cp here.
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If one tries to prove Picard’s Theorem for p -adic entire functions, what one gets
is the following theorem.

Theorem 1.3. (p-Adic Case) A non-constant p-adic entire function must take
on every value in Cp. Moreover, a transcendental p-adic entire function must take
on every value in Cp infinitely often.

Proof. Let f(z) =
∑

anzn be a p -adic entire function, so lim
n→∞

|an|prn = 0, for

all r > 0. Denote by |f |r = sup |an|prn. The graph of

log r 7→ log |f |r = sup
n≥0

{log |an|p + n log r}

is piecewise linear and closely related to what’s known as the Newton polygon. In
particular, ther zeros of f occur at the “corners” of the graph of log r 7→ log |f |r
(c.f., [Am] and [BGR]).

For r close to zero, |f |r = |a0|p, provided a0 6= 0. Moreover, it is clear that if f
is not constant, then for all r sufficiently large, |f |r 6= |a0|p. Hence, the graph of
log r 7→ log |f |r has a corner, and hence f has a zero.

If f is transcendental, then f has infinitely many non-zero Taylor coefficients,
and thus for every n, there exists rn such that for all r ≥ rn, we have |f |r > |an|prn.
Hence, log r 7→ log |f |r must have infinitely many corners, and so f has infinitely
many zeros. 2

Note that Theorem 1.3 is an even closer analogy to the Fundamental Theorem of
Algebra than Picard’s Theorem was, since p -adic entire functions, like polynomials,
cannot omit any values. Thus, in this respect, the function theory of p -adic entire
functions is more closely related to the function theory of polynomials than it is to
the function theory of complex holomorphic functions. That will be the theme of
this survey.

2. Algebraic Curves

My second illustration that p -adic function theory is more like that of polyno-
mials comes from considering Riemann surfaces. Let X be a projective algebraic
curve of genus g. Then, the three analogous theorems we have are:

Theorem 2.1. (Polynomial Case) If f : C → X is a non-constant polynomial
mapping, then g = 0.

Theorem 2.2. (Complex Case) If f : C → X is a non-constant holomorphic
mapping, then g ≤ 1.

Theorem 2.3. (p-Adic Case) If f : Cp → X is a non-constant p-adic analytic
mapping, then g = 0.

The polynomial case follows from the Riemann-Hurwitz formula, which says that
the genus of the image curve cannot be greater than the genus of the domain.

The complex case was again proved by Picard. Riemann surfaces of genus ≥ 2
have holomorphic universal covering maps from the unit disc, and thus any holo-
morphic map form C to a Riemann surface of genus ≥ 2 lifts to a holomorphic
map to the unit disc, which must then be constant by Liouville’s Theorem.

The p -Adic analog of this theorem was proven only recently, by V. Berkovich [Ber].
One of the major difficulties in p -adic function theory is the fact that the nat-

ural p -adic topology is totally disconnected, and therefore analytic continuation
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in these circumstances is a delicate task. Moreover, geometric techniques that are
commonplace in complex analysis cannot be applied in the p -adic case. In order
to prove his p -adic analog of Picard’s Theorem, Berkovich developed a theory of
p -adic analytic spaces that enlarges the natural p -adic spaces so that they become
nice topological spaces, and geometric techniques, such as universal covering spaces,
can be used to prove theorems.

3. Berkovich Theory

Berkovich’s theory is somewhat deep, and I do not have ther required space to
go into it in much detail here. However, the reader may find the following brief
description of his theory helpful. The interested reader is encouraged to look at:
[Ber], [Ber 2], and [BGR]. The last reference covers the more traditional theory of
rigid analytic spaces.

Although one can associate a Berkovich space to any p -adic analytic variety, we
will concentrate here on the special case of the unit ball in Cp, which is the local
model for smooth p-adic analytic spaces, at least in dimension one.

Consider the closed unit ball B = {z ∈ Cp : |z|p ≤ 1}. The p -adic analytic func-
tions on B are of the form

∑

anzn, with lim
n→∞

|an|p = 0. These functions form a

Banach algebra A under the norm |f |0,1 = sup
n
|an|p.

The Berkovich space associated to B consists of all bounded multiplicative semi-
norms on A. This space is provided with the weakest topology such that all maps
of the form | | 7→ |f |, f ∈ A are continuous maps to the real numbers with their
usual topology. Here | | denotes one of the bounded multiplicative semi-norms in
the Berkovich space.

Berkovich spaces have many nice topological properties, such as local compact-
ness and local arc-connectedness. They also have universal covering spaces, which
are again Berkovich spaces.

For f ∈ A, z0 ∈ B, and 0 ≤ r ≤ 1, define |f |z0,r by |f |z0,r = supn |cn|prn,
where f =

∑

cn(z − z0)n, or in other words, the cn are the coefficients of the Taylor
expansion of f about z0. Note that if r = 0, then |f |z0,0 = |f(z0)|p, and note that
by the non-Archimedean triangle inequality, if |z0 − w0|p ≤ r, then | |z0,r = | |w0,r.
There are in fact more bounded multiplicative semi-norms on B than these, but
these are the main ones to think about.

| |w0,r = | |z0,r

| |0,1

| |z0,0| |w0,0

Figure 1.
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Figure 1 gives a sort of intuitive “tree-like” representation for the Berkovich space
associated to B. The dots at the top correspond to the totally disconnected points
in B. Of course there are infinitely many of these, and there are points arbitrarily
close together, much like a Cantor set. The lines represent the connected continuum
of additional multiplicative semi-norms connecting the Berkovich space. There are
of course infinitely many places where lines join together, and the junctures are
by no means discrete. Finally, the point at the bottom corresponds to the one
semi-norm | |z0,1 which is the same for all points z0 in B.

We say that two points z0 and w0 in B are in the same residue class if
|z0 − w0|p < 1. This leads to a concept called “reduction,” whereby the space is
“reduced” to the space of residue classes. The reduction of B can be naturally
identified with A1

Falg
p

, the affine line over the algebraic closure of the field of p
elements. This process of reduction extends to the Berkovich space associated to
B, and there is a reduction mapping π from the Berkovich space B to A1

Falg
p

. The
reduction mapping π has what I would call an anti-continuity property, in that
π−1 of a Zariski open sets in A1

Falg
p

will be closed in the Berkovich topology and

π−1 of a Zariski closed set will be open in the Berkovich topology.
In Figure 1, two points in the Berkovich tree are in different residue classes if

their branches do not join except at the one point | |0,1, which is kind of like a
“generic” point in algebraic geometry, and is in fact the inverse image of the generic
point in A1

Falg
p

under the reduction map. Thus, three residue classes are shown in
Figure 1.

4. Abelian Varieties

In my Ph.D. thesis [Ch 1], I extended Berkovich’s Theorem to Abelian varieties.
See also: [Ch 2] and [Ch 3].

Theorem 4.1. (Cherry) If f : Cp → A is a p-adic analytic map to an Abelian
variety, then f must be constant.

Proof sketch.

T is a product of multiplicative groups (i.e. a multiplicative torus).
G is the universal cover of A in the sense of Berkovich, and a semi-Abelian variety.
B is an Abelian variety with good reduction, meaning it has a reduction mapping πB

to an Abelian variety eB over Falg
p .

T1 G B 1

ACp
f ˜B

πB

f !

Figure 2.

Step 1. First, we use Berkovich theory to lift f to a map f ! : Cp → G to the
universal covering of A.
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Step 2. Next we use p-adic uniformization ([BL 1], [BL 2], [DM]) to identify G
as a semi-Abelian variety, as in Figure 2.

Step 3. Then, we use reduction techniques. We get a map

Cp → G → B → ˜B.

This map must be constant because if it were not we would induce a non-constant
rational map from the projective line over Falg

p to the Abelian variety ˜B. Thus, the
image in B lies above a single smooth point in ˜B. The inverse image of a smooth
point in ˜B is isomorphic to an open ball in Cn

p , where n is the dimension of B.
Thus, the map to B is also constant, by the p -adic version of Liouville’s Theorem,
for example.

Step 4. Thus, we only need consider mappings from Cp to T. But,

T ∼= Cp \ {0} × · · · ×Cp \ {0}.
The projection onto each factor is constant by the p-Adic version of Picard’s Little
Theorem. 2

Because p -adic analytic maps to Abelian varieties must be constant, the follow-
ing conjecture seems plausible.

Conjecture 4.2. Let X be a smooth projective variety. If there exists a non-
constant p-adic analytic map from Cp to X, then there exists a non-constant
rational mapping from P1 to X.

5. Value Sharing

One of the more striking consequences of Nevanlinna theory is Nevanlinna’s
theorem that if two non-constant meromorphic functions f and g share five values,
then f must equal g, [Ne]. The polynomial version of this was taken up by Adams
and Straus in [AS].

Theorem 5.1. (Adams and Straus) If f and g are two non-constant polynomi-
als over an algebraically closed field of characteristic zero such that f−1(0) = g−1(0)
and f−1(1) = g−1(1), then f ≡ g.

Proof. Assume deg f ≥ deg g and consider [f ′(f − g)]/[f(f − 1)]. This is a
polynomial because if f(z) = 0 or 1, then f(z) = g(z) by assumption, and hence
the zeros in the denominator are canceled by the zeros in the numerator, and the
f ′ in the numerator takes care of multiple zeros. On the other hand, the degree of
the numerator is strictly less than the degree of the denominator, so the numerator
must be identically zero. In other words f is constant, or f is identically equal to
g. 2

Theorem 5.2. (Adams and Straus) If f and g are non-constant p-adic (char-
acteristic zero) analytic functions such that f−1(0) = g−1(0), and f−1(1) = g−1(1),
then f ≡ g.

Proof. We may assume without loss of generality that there exist rj →∞ such
that |f |rj ≥ |g|rj . Let h = [f ′(f − g)]/[f(f − 1)]. Then, h is entire since, as in
the polynomial case, zeros in the denominator are always matched by zeros in the
numerator. On the other hand, by the non-Archimedean triangle inequality, we
have for rj sufficiently large that

|h|rj =
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

rj

·
|f − g|rj

|f − 1|rj

≤
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

rj

·
|f |rj

|f |rj

=
∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

rj

.
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Now, I claim |f ′/f |r ≤ r−1, and therefore |h|rj → 0 as rj → ∞. Hence, h ≡ 0,
and again, either f is constant of f ≡ g. 2

The claim that |f ′/f |r ≤ 1/r is the p-adic form of the Logarithmic Derivative
Lemma, and note this is much stronger than what is true in the complex case.

Theorem 5.3. (p-Adic Logarithmic Derivative Lemma) If f is a p-Adic
analytic function, then |f ′/f |r ≤ 1/r.

Proof. Write f =
∑

anzn. Then, since |n|p ≤ 1, we have

|f ′|r = sup
n≥1

{|nan|prn−1} =
1
r

sup
n≥1

{|nan|prn} ≤ 1
r

sup
n≥0

{|an|prn} =
1
r
|f |r 2

Notice the similarity in both the proof and the statement of both of Adams and
Straus’s theorems.

An active topic of current research has to do with so called “unique range sets.”
Rather than considering functions which share distinct values, one considers finite
sets and functions f and g such that f−1(S) = g−1(S). Here, Boutabaa, Escassut,
and Haddad [BEH] gave a nice characterization for unique range sets of polynomials,
in the counting multiplicity case.

Theorem 5.4. (Boutabaa, Escassut, and Haddad) If f and g are polynomi-
als over an algebraically closed field F of characteristic zero, and if S is a finite
subset of F such that f−1(S) = g−1(S), counting multiplicity, then either f ≡ g
or there exist constants A and B, A 6= 0, such that g = Af + B and S = AS + B.

Proof. Let S = {s1, . . . , sn} and let

P (X) = (X − s1) · · · (X − sn).

Then, P (f) and P (g) are polynomials with the same zeros, counting multiplic-
ity by the assumption f−1(S) = g−1(S). Thus, P (f)/P (g) is some non-zero con-
stant C, and if we set F (X,Y ) = P (X)− CP (Y ), we have F (f, g) = 0. Thus,
z 7→ (f(z), g(z)) is a rational component of the possibly reducible algebraic curve
F (X,Y ) = 0. Because F (X,Y ) = 0 has n distinct smooth points at infinity in
P2 (characteristic zero!) and because (f(z), g(z)) has only one point at infinity,
(f(z), g(z)) must in fact be a linear component of F (X, Y ) = 0. 2

Boutabaa, Escassut, and Haddad also made a preliminary analysis of the p -adic
entire analog of their theorem, and solved the case when the cardinality of S equals
three completely. C.-C. Yang and I, [CYa], combined Berkovich’s Picard theorem
with their argument to complete the p-adic entire case.

Theorem 5.5. (Cherry and Yang) If f and g are p-adic entire functions and
S is a finite subset of Cp such that f−1(S) = g−1(S), counting multiplicity, then
there exist constants A and B, with A 6= 0, such that g = Af+B, and S = AS+B.

Proof. Again, set
P (X) = (X − s1) · · · (X − sn).

Again, P (f)/P (g) is a constant C 6= 0. Again, set F (X,Y ) = F (X)− CF (Y ). By
Berkovich’s p-Adic Picard Theorem, (f(z), g(z)) is contained in a rational compo-
nent of F (X, Y ) = 0. Thus, there exist rational functions u and v, and a p-adic
entire function h, such that f = u(h) and g = v(h). It is then easy to see that u
and v must in fact be polynomials, and we are then back to the polynomial case,
thinking of h as a variable. 2
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6. Concluding Remarks

In many respect, it appears that algebraic geometry, rather than complex Nevan-
linna theory, is the appropriate model for p-adic value distribution theory. At least,
that is what I hope this survey has conveyed to the reader. This leads me to a gen-
eral principle.

Principle 6.1. Appropriately stated theorems about the value distribution of poly-
nomials should also be true for p-adic entire functions. Similarly, theorems for
rational functions should also be true for p-adic meromorphic functions.

Conjecture 4.2 is a special case of this principle. With some luck, solving a p-
adic problem based on the above principle might help us better understand complex
Nevanlinna theory. For example, it would be reasonable to make the following
conjecture.

Conjecture 6.2. If f : Cp → X is a p-adic analytic map to a K3 surface X, the
the image of f must be contained in a rational curve.

This conjecture can be thought of as a special case of a p -adic version of the
Green-Griffiths conjecture [GG] that says a holomorphic curve in a smooth pro-
jective variety of general type must be algebraically degenerate. One might hope
to attack Conjecture 6.2 since much is known about K3 surfaces and they have
a close connection to Abelian varieties. It might also be that finding a proof for
Conjecture 6.2 would shed some light on an attack of the general Green-Griffiths
conjecture over the complex numbers.
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