Hilbert Axioms

Incidence Axioms

- **I1.** Any two distinct points lie on a *unique* line.
- **I2.** Every line contains at least two points.
- **I3.** There exist three non-colinear points.

Parallel Axiom

P. Given a point P and a line ℓ , there is at most one line through P parallel to ℓ .

Betweenness Axioms

- **B1.** If A * B * C, then A, B, and C are three distinct points all on a line and C * B * A.
- **B2.** Given two distinct points A and B, there exists a point C so that A*B*C. [In other words, a line segment \overline{AB} can always be extended to a line segment \overline{AC} so that B is between A and C.]
- **B3.** Given three distinct points A, B, and C all on a line, exactly one of the following is true:

$$A*B*C$$

$$B * A * C$$

$$A*C*B$$

[In other words, one and only one of the three points is in the middle.]

B4. Given three non-colinear points A, B, and C and a line ℓ not containing A, B, or C and containing a point D with A*D*B, then ℓ must also contain another point E such that exactly one of the following is true: A*E*C or B*E*C. [In other words, a line going into a triangle and not through any of the vertices, must also come out through exactly one of the two remaining sides of the triangle.]

Segment Congruence Axioms

- **C1.** Given a segment \overline{AB} and a ray r with vertex C, there exists a *unique* point D on r with $\overline{CD} \cong \overline{AB}$.
- C2. Congruence of segments is an equivalence relation.
- **C3.** If A*B*C and D*E*F and $\overline{AB}\cong \overline{DE}$ and $\overline{BC}\cong \overline{EF}$, then $\overline{AC}\cong \overline{DF}$.

Angle Congruence Axioms

- **C4.** Given an angle $\angle BAC$, given a ray \overrightarrow{DF} , and given a side of line \overrightarrow{DF} , there exists a *unique* ray \overrightarrow{DE} on the given side of line \overrightarrow{DF} , such that $\angle BAC \cong \angle EDF$.
- C5. Congruence of angles is an equivalence relation.
- C6. Side-angle-side.

Circle-Circle Intersection

E. Given two circles Γ and Δ , if Δ contains at least one point inside Γ and at least one point outside Γ , then Γ and Δ intersect.

Other Useful Stuff

Proposition 6.1. Two distinct lines intersect in *at most one* point.

Proposition 7.1 (plane seperation). Let ℓ be a line, and let A, B, and C be points not on ℓ .

- (i) If A and B are on the same side of ℓ and B and C are on the same side of ℓ , then A and C are on the same side of ℓ .
- (ii) If A and B are on the same side of ℓ and B and C are on opposite sides of ℓ , then A and C are on opposite sides of ℓ .
- (iii) If A and B are on opposite sides of ℓ and B and C are on opposite sides of ℓ , then A and C are on the same side of ℓ .

Proposition 7.2 (line seperation). Let P be a point on a line ℓ . Let A, B, C be points on $\ell \setminus \{P\}$.

- (i) If A and B are on the same side of P and B and C are on the same side of P, then A and C are on the same side of P.
- (ii) If A and B are on the same side of P and B and C are on opposite sides of P, then A and C are on opposite sides of P.
- (iii) If A and B are on opposite sides of P and B and C are on opposite sides of P, then A and C are on the same side of P

Proposition 7.3 (crossbar theorem). Given an angle $\angle BAC$ and a point D on the inside of $\angle BAC$, then \overrightarrow{AD} intersects \overline{BC} .

Exercise 7.1. (i) If A * B * C and B * C * D, then A * B * D and A * C * D. (ii) If A * B * D and B * C * D, then A * B * C and A * C * D.

Proposition 8.3 (subtraction of segments). Given points A, B, C, D, E, and F with $B \in \overline{AC}$ and $F \in \overline{DE}$ and $\overline{AB} \cong \overline{DE}$ and $\overline{AC} \cong \overline{DF}$, then $E \in \overline{DF}$ and $\overline{EF} \cong \overline{BC}$.

Proposition 8.4 (Inequalities of segments). Given two segments \overline{AB} and \overline{CD} , exactly one of the following is true: (i) $\overline{AB} \cong \overline{CD}$, (ii) $\overline{AB} < \overline{CD}$, (iii) $\overline{CD} < \overline{AB}$.

Proposition 9.4 (addition of angles). Suppose $\angle BAC$ is an angle, and ray \overrightarrow{AD} is in the interior of $\angle BAC$. Suppose $\angle D'A'C \cong \angle DAC$, $\angle B'A'D' \cong \angle BAD$, and the rays $\overrightarrow{A'B'}$ and $\overrightarrow{A'C'}$ are on opposite sides of the line A'D'. Then, the rays $\overrightarrow{A'B'}$ and $\overrightarrow{A'C'}$ form an angle with $\angle B'A'C' \cong \angle BAC$, and the ray $\overrightarrow{A'D'}$ is in the interior of $\angle B'A'C'$.

Proposition 9.5 (Inequalities of angles). (a) If $\alpha \cong \alpha'$ and $\beta \cong \beta'$, then $\alpha < \beta$ if and only if $\alpha' < \beta'$. (b) If $\alpha < \beta$ and $\beta < \gamma$, then $\alpha < \gamma$. (c) Given any two anlges α and β , exactly one of the following holds: $\alpha < \beta$, $\alpha \cong \beta$, or $\beta < \alpha$.